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Abstract. We describe a method for the characterization 
of electroencephalographic (EEG) signals based on 
a model which features nonlinear feedback. The charac- 
teristic EEG 'fingerprints' obtained through this ap- 
proach display the time-course of nonlinear interactions, 
rather than aspects susceptible to standard spectral anal- 
ysis. Fingerprints of seizure discharges in six patients (five 
with typical absence seizures, one with complex partial 
seizures) revealed significant nonlinear interactions. The 
timing and pattern of these interactions correlated close- 
ly with the seizure type. Nonlinear autoregressive 
(NLAR) analysis is compared with other nonlinear dy- 
namical measures that have been applied to the EEG. 

1 Introduction 

It is well recognized that epilepsy is a disturbance of 
neural circuits as well as an intrinsic disturbance of cells 
(Ebersole 1987). Although considerable attention has 
been paid to the cellular alterations in epilepsy (Prince 
1978; Ebersole 1987), the circuit disturbances are not as 
well characterized. To characterize the circuit disturban- 
ces, a physiologically meaningful and numerically robust 
characterization of the time course of ictal electro- 
encephalogram (EEG) patterns is required. These consid- 
erations motivated the development of a new analytical 
tool, nonlinear autoregressive analysis (NLAR) (Victor 
and Cartel 1992). The purpose of this paper is to describe 
the application of NLAR to ictal EEG records, and to 
discuss the implications of these findings. 

2 The nonlinear autoregressive model 

Linear autoregressive (LAR) models (Gersh and 
Yonemoto 1977; Lopes da Silva 1982) characterize the 
EEG as a linear filter's response to a gaussian white noise 
input. Normal EEG activity is approximately gaussian 
(Elul 1969) and is well-characterized by LAR models 
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(Siegel 1981; Wright et al. 1990). However, it fails to 
model key features of the ictal EEG, such as spiking 
behavior. This is because unidirectional spikes are incon- 
sistent with the symmetry of a gaussian process. 

Essentially, the NLAR model is a LAR model aug- 
mented by one or more quadratic interaction terms. Each 
such term represents the interaction of EEG values at 
two previous times. These nonlinear terms permit the 
description of nonlinear phenomena and deviations from 
gaussian processes. As with LAR and other models, 
description of the activity of populations of cortical 
neurons as recorded in the EEG does not specify the 
microdynamics of the underlying cellular elements 
(Wilson and Cowan 1972). Rather, the aim is to provide 
a window on the overall circuit properties and feedback 
interactions underlying ictal activity. 

In this study, single-channel EEG recordings were 
examined from five patients with typical absence seizures 
and one patient with complex partial seizures. EEG seg- 
ments exhibiting ictal activity were fitted by both LAR 
and NLAR models. In all cases, the NLAR model pro- 
vided a more efficient fit than LAR models. Finally, the 
NLAR method is compared with other nonlinear dynam- 
ical measures applied to the EEG. 

2.1 Patient characteristics and electrophysiologic 
recording 

We analyzed EEG data from six patients (five with typi- 
cal absence seizures, one with complex partial seizures 
during recovery from herpes simplex encephalitis) whose 
clinical characteristics are listed in Table 1. 

Sixteen bipolar derivations of EEG were recorded via 
Ag/AgC1 electrodes placed on the scalp according to the 
10-20 system. These signals were recorded on a Telefac- 
tor (West Conshohocken, Penn.) telemetry apparatus 
(sampling at 250 Hz, high-pass filter at 0.3 Hz and low- 
pass filter at 70 Hz) along with a video image of the 
patient. Records which contained a clear artifact-free 
recording of ictal events were chosen for further analysis. 
The single channel chosen for analysis represented the 
clearest spike-wave complex by visual inspection. In pa- 
tients 1-5, the 3/s spike wave discharge was generalized; 
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Table 1. Clinical characteristics of the patients studied 

Patient Ictal EEG Clinical seizure Medications 
no. pattern type 

analyzed 

Age 
(years) 

1 3/s spike wave Typical absence Valproate 12 
2 3/s spike wave Typical absence None 10 
3 3/s spike wave Typical absence Carbamazepine 6 
4 3/s spike wave Typical absence, Carbamazepine 10 

complex partial 
5 3/s spike wave Typical absence, Valproate 10 

generalized 
convulsive 

6 Focal temporal Complex partial Phenytoin, 50 
repetitive sharp phenobarbitol 
and slow waves 

F p l - F 7  was chosen for analysis unless otherwise noted. 
In patient 6, anterior temporal derivations were studied. 
This channel represented the clearest ictal morphology. 
The length of the segment from each ictal event varied 
from 4 to 8 s. In patients 1-3, 5, and 6, ictal events 
occurred during wakefulness. The electrographic ictal 
events analyzed from patient 4 occurred during sleep. 

2.2 Strategy fo r  autoregressive modelling 

In a LAR model, a sample y, of the EEG signal is 
represented as a sum of a random term, x,,  and a linear 
combination of values of the EEG at r prior times, 
Y n -  1 ,  �9 �9 �9 , Y n - r :  

y,  = x , -  ~ a j y , _ j  (1) 
j = l  

The random terms x. are assumed to be independently 
distributed. 

In a NLAR model, we add quadratic terms to the 
above equation. A quadratic term allows EEG values at 
two prior times to interact. A model with all such pos- 
sible terms takes the form 

i = 1  j = l  k = l  

In the model (2), an offset term ao is included. This term is 
required because the quadratic terms Cj, k may shift the 
mean of the linear prediction. 

We estimate the coefficients ai and Cj.k from the 
measured time series y, by minimizing the unexplained 
(residual) variance V: 

v = ( x .  ~ > 13) 

where ( ) represents an average over the data set. This 
minimization amounts to solving a system of linear equa- 
tions strictly analogous to the Yule-Walker equations 
(Yule 1927; Gersh and Yonemoto 1977) of LAR models. 
(For further details, see Victor and Canel 1992.) We 
incorporate constant, linear, and quadratic terms in 
a common notation, and rewrite (2) as: 

J 

y.  = ~ Ck fk (Y , -1Y . -  2 . . . . .  y ._ , )  + x ,  (4) 
k = l  

We denote the current and previous values of the time 
series at step n by Y, = (y , ,y ,_  1 . . . . .  ) and use the nota- 
tion fj(Y,) = f~(y,_ 1,Y,- 2,. " �9 , Yn-r)" Quantities such as 
fa . . . . .  fs and ca . . . . .  cj will be grouped as column- 
vectors f and ~. Here f" encompasses the LAR inputs 
Y,-i and the quadratic AR inputs Y, -~Y , -k  (as well as the 
constant term). Similarly, ~encompasses the LAR coeffic- 
ients a,_i and the quadratic AR coefficients C , - j y , - k  (as 
well as the constant coefficient a0). 

With these conventions, the model (2) may be rewrit- 
ten 

y, =~ ' (y , ) r~  + x, (5) 

and the residual variance (3) may be rewritten 

V = ([Yn - f (  yn)T~]2> (6) 

The Yule-Walker equations for the coefficients ~' can be 
obtained by setting OV/Ocj = 0 for each cj: 

( f i y , ) y , )  = <~'(r , )~(r , ) r )~,  (7) 

Provided the matrix ( f - (y , )~ (y , ) r )  is nonsingular, 
values for ~' may be calculated from: 

e = ( f i y , ~ ( ( y , ) r ) - , ( [ ( y , ) y , )  (8) 

Although in principle the above algorithm may be ap- 
plied exactly as it stands, it suffers from two related 
weaknesses: there is an explosion of quadratic model 
parameters Cj.k, and the matrix in (8) may consequently 
be nearly singular. For a full quadratic model with 
20 lags, there would be a total of 231 free parameters 
(1 offset, 20 linear, 210 quadratic). Though the issue 
of near-singularity can be addressed by an orthogonaliz- 
ation scheme (Korenberg 1988), in this work we take 
an approach which deals directly with the parameter 
explosion. We restrict consideration to models in which 
only a few of the terms Cj, k are present. When 
only a single term is present, the NLAR model takes the 
form: 

y,  = x ,  - ao - ~ a i y , - i  - Cj.kYn-jYn-k (9) 
i = 1  

This approach allows examination of the nonlinear dy- 
namics without the need to fit a model with an excessive 
number of free parameters. Our strategy results in 
a model with 22 free parameters (1 offset, 20 linear, 
1 quadratic). The residual variance for a single-term 
NLAR model necessarily depends on the choice of lags 
(j, k) for the single included nonlinear term. This depend- 
ence is a consequence of the nonlinear dynamics of the 
process which generates the original time series, and we 
call this dependence the 'NLAR fingerprint.' 

2.3 Determination o f  significance o f  AR terms 

In any AR model, adding a new term never increases the 
residual variance. Thus, reduction of residual variance 
per se does not imply a significantly improved model. 
For  LAR models, Akaike (1974) proposed a statistical 
criterion to determine when the amount of reduction in 



residual variance is sufficient to justify the inclusion of an 
additional term. The Akaike criterion (AIC) is the sum of 
two quantities: 

AIC = Nlog  V + 2J (10) 

where N represents the number of data points, J is the 
number of model terms, and V is the residual variance. 
The AIC balances the cost of the number of parameters 
(2J) against the amount  of information in the model 
(reduction in V). Akaike's derivation of the AIC (Akaike 
1974) rested on the fact that the LAR parameters estim- 
ated from the Yule-Walker equations are the maximum- 
likelihood estimates. But in NLAR models, parameter 
estimates from the Yule-Walker equations are not 
maximum likelihood estimates, since the x,'s are 
not assumed to be distributed in a gaussian fashion. 
Nevertheless, the reduction in variance A V resulting 
from the addition of a single nonlinear term with coeffic- 
ient cj can be used as a measure of the significance of that 
term. This is because at a given level of significance p, the 
confidence limit for cj for the nonlinear term does not 
include 0 when 

N A V / V  > K (11) 

where K is the square of the critical value of the t-statistic 
(Victor and Canel 1992). The criterion (11) for K = 2 
corresponds to the AIC (10). 

3 Results 

3.1 Robustness of  NLAR model 

The analysis procedure for an EEG segment consisted of 
the following steps. In the first step, we fitted LAR mod- 
els to a data segment via (8). In the second step, we fitted 
multiple nonlinear models (9), one for each possible pair 
of lags (j, k), as described above. The lags j and k were 
allowed to range from 1 to 20 sampling intervals (see 
below). We then construct the nonlinear fingerprint, 
a contour map, which displays the residual variance 
V for each pair of lags (j, k). 

3.2 NLAR modelling, of  one seizure record 

In this section, we go through the analysis of one data 
segment in detail. Channel 7 (Fp l -F7)  was chosen for 
analysis because the spike wave discharge was prominent 
and the segment was free of artifact. 

We next used (1) to generate LAR models with a suc- 
cessively increasing number J of linear terms. Data 
digitized at the initial sampling rate of 250 Hz was resam- 
pled at 125 Hz (2:1) prior to LAR analysis, so that each 
lag represented 8 ms. Figure 1, shows the residual vari- 
ance (V), relative AIC values, and the fractional reduc- 
tion in variance ( N A V / V )  for LAR models with 1-20 
linear terms. For  these models, the AIC showed a min- 
imum at J = 6 lags. This model accounted for 82.40% of 
the variance. After a slight rise in the AIC value, addition 
of further lags resulted in small decreases in the criterion 
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for 13-20 lags. With J = 20 lags, the LAR model ac- 
counted for 83.26% of the variance, which represents 
a very slight improvement over the 6-lag LAR model. 

In the second step of the analysis, a single quadratic 
(or bilinear) interaction term was added into the other- 
wise linear AR model. The Yule-Walker equations for 22 
terms (an offset, 20 linear terms, and a single quadratic 
or bilinear interaction term) were used to calculate the 
coefficient c j ,  k and the resulting reduction in the variance 
A Vi, k. This calculation was performed separately for all 
values of j  and k in the range from 1 to 20, to explore the 
space of nonlinear signal interactions. The number 
of lags in the LAR model was held fixed at 20 to allow 
all quadratic terms to be compared on an equal footing. 
(If a nonlinear term were introduced at a lag for which no 
linear term were present, then the absence of a linear term 
per se might bias the estimate of the contribution of the 
nonlinear term; Victor and Canel 1992.) Contour maps 
were generated for the reduction in residual variance 
A V~. k (Fig. 2). In the contour map (Fig. 2) of the reduction 
in residual variance A Vi, k, we have indicated statistical 
significance of the quadratic terms by placing a small 
solid dot at the coordinates (j, k) for which the reduction 
in variance satisfies (11) with K = 4. This is a stricter 
criterion than the AIC, which corresponds to K -- 2. 

One prominent feature of the NLAR fingerprint 
(Fig. 2) for this segment is a ridge parallel to the main 
diagonal running from (4, 7) to (8, 11). Since at the samp- 
ling rate of 125 Hz each lag represents 8 ms, this pattern 
indicates an interaction of signals separated by roughly 
24 ms from times 32 ms to 64 ms in the past. The other 
local minima of variance were at (3, 2), (8, 17), (15, 15) and 
(1, 8). 

The range of reduction in variance achieved with the 
addition of specific nonlinear interaction terms is shown 
over the symbol Q in Fig. 1A. The reduction of the AIC 
accompanying inclusion of a single quadratic term varied 
from none I-lags (2, 16)] to substantial [115 for lags 
(3, 2)]. The NA V/V term correspondingly ranged from 
2 [lags (2, 16)] to 132 [lags (3, 2)]. The NLAR model 
with the single term at lags (3, 2) accounted for 86.79% of 
the total variance. That is, this one-term NLAR model 
accounted for 21% of the variance which remained after 
the 20-term LAR model was fitted. 

To determine whether the pattern and location of 
features in the NLAR fingerprint were tied to the samp- 
ling rate or rather to the time interval represented by the 
lags, we performed the analysis described above on the 
same data segment sampled at intervals of 12 and 16 ms. 
The features in the 12 and 16 ms fingerprints (not shown) 
matched the features in the 8-ms fingerprint provided 
that the amount of time represented by each lag is taken 
into account. For  example, there was a minimum at lags 
(9, l) in the 8-ms fingerprint, which corresponds to 
(72 ms, 8 ms). This feature matched a minimum in the 
12-ms fingerprint between lags (6, 1) and lags (7, 1), which 
corresponds to (78 ms, 12 ms). It also matched a min- 
imum in the 16-ms fingerprint at lags (5, 1), which corres- 
ponds to (80 ms, 16 ms). The only major minimum in the 
8-ms fingerprint which was not preserved in the finger- 
prints sampled at coarser intervals is the minimum at 
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lags (3, 2). Presumably, the failure of the coarser data 
sampling to resolve this interaction is a consequence of 
its brief time course. Other than this exception, this 
analysis shows that the features in the nonlinear finger- 
prints represent interactions that are inherent in the time 
structure of the data and are not a consequence of the 
sampling rate. 

We carried out the analysis described above for a sec- 
ond seizure event recorded in patient 1. The dependence 
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Fig. 1. A Residual variance (/~V 2) for linear (left section of abscissa) 
and nonlinear (Q) autoregressive (NLAR) models. The two points 
above the abscissa Q indicate the range of residual variances encoun- 
tered among all NLAR models. B Reduction in the Akaike criterion 
(AIC) for linear and NLAR models. C NA V/V for linear and NLAR 
models. Terms corresponding to NA V/V > 4 are statistically signifi- 
cant at P < 0.05 by the method of Victor and Canel (1992). Data from 
channel 7 (Fpl-F7). 

of the residual variance (V), AIC, and the fractional 
reduction in variance (NA V/V) on the number of lags in 
LAR models was very similar to that seen in the first data 
set. Although the relative amounts of variance reductions 
differed somewhat, the overall pattern and position of the 
fingerprint features were remarkably similar in the two 
discharges. 

3.3 Comparison across patients 

The analysis described above was applied to ictal records 
from the other four patients with 3/s seizures (Table 1). 
Only fragmented 3/s discharges were recorded in patient 
2. Nevertheless, the NLAR fingerprint obtained from 
these fragments (Fig. 3A) was markedly similar to that of 
patient 1: minima at lags (8, 1), (8, 17), and along a ridge 
parallel to the diagonal from lags (3,6) to (6,9). 
The NLAR fingerprint obtained from 3/s discharges of 
patient 3 (Fig. 3B) was somewhat different from that 
of patients 1 and 2, but nevertheless showed minima at 
lags (9, 1) and (8, 17). The parallel ridges off the diagonal 
were shifted up to lags (8, 10). 

The NLAR fingerprints obtained from patients 4 and 
5 are different from those of patients 1-3. The fingerprint 
for patient 4 (Fig. 4A) displayed only two of the promin- 
ent minima seen in patients 1-3 [lags (8, 1) and lags 
(8, 17)] and did not have the ridges. The fingerprint from 
patient 5 (not shown) had a steep minimum at (8, 17), 
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Fig. 2. Nonlinear autoregressive (NLAR) fingerprint derived from an 
ictal discharge recorded from patient 1. This is a contour map of the 
reduction in residual variance A Vj.k for NLAR models containing 
a single nonlinear term at lags (j, k). Each time unit (j or k) represents 
8 ms. Tickmarks point downhill, and each contour line represents 0.25% 
of the variance. Statistical significance is indicated by placing a small, 
solid dot at the coordinates (j, k) for which the reduction in variance 
satisfies NA Vj.k/V > 4. The discharge analyzed is displayed above the 
contour map. Data from channel 7 (Fpl-F7) .  

which corresponds to a feature seen in patients 1-4. 
Another minimum in this fingerprint, at lags (16, 16), may 
correspond to the minimum seen in the fingerprints from 
patient 1 at lags (15, 15). The fingerprint of patient 5 
also lacked the off-diagonal ridges seen in patients 1-3. 
Of note, patients 4 and 5 show an atypical morphology of 
the 3/s discharge (more sharp waves than spike waves), 
and patient 5 has a congenital brain malformation 
(Dubowitz syndrome). Patients 1-3 have typical 3/s spike 
waves seen in petit mal epilepsy. 

An NLAR fingerprint derived from a complex partial 
seizure in patient 6, as recorded at T1-T2, is shown in 
Fig. 4B. This seizure discharge is approximately periodic 
at 2.5 Hz. The NLAR fingerprint has little in common 
with the other fingerprints. There were no minima corres- 
ponding to interactions at lags greater than 80 ms (lag 
10), and there were no ridges parallel to the diagonal. The 
deepest minimum was at lags (5, 6), corresponding to 
(40 ms, 48 ms). 

Table 2 summarizes the major features of fingerprints 
obtained from 3/s seizure records. Fingerprints from all 
patients (1-5) had a prominent minimum at lags (8, 17), 
which corresponds to (64 ms, 136 ms). Fingerprints from 
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I 450pV , , 
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g 
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(160 ms) 

(160 ms) 
B g 
Fig. 3. A NLAR fingerprint derived from a fragmented ictal discharge 
recorded from patient 2. Each contour line represents 0.1% of the 
variance. For other plotting conventions as in Fig. 2. The discharge 
analyzed is displayed above the contour map. B NLAR fingerprint 
derived from an ictal discharge recorded from patient 3. Each contour 
line represents 0.05% of the variance. Other plotting conventions as in 
Fig. 2. The discharge analyzed is displayed above the contour map. 
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Fig. 4. A NLAR fingerprint derived from an ictal discharge recorded 
from patient 4. Each contour line represents 0.01% of the variance. 
Other plotting conventions as in Fig. 2. The discharge analyzed is 
displayed above the contour map. B NLAR fingerprint derived from an 
ictal discharge recorded from patient 6. Each contour line represents 
0.025% of the variance. Other plotting conventions as in Fig. 2. The 
discharge analyzed is displayed above the contour map. Note that both 
seizures have similar periodicity but clearly different dynamics reflected 
in the NLAR fingerprint. 

four of the five patients (1-4) had a prominent minimum 
at lags (1, 8) or (1, 9). Three of the five patients (patients 
1-3) showed the striking feature of deep ridges parallel to 
the diagonal. The similar location of the minima stands 
in contrast to the large differences in the percentage of the 
variance explained by LAR and NLAR models. None of 
these minima corresponded to features in the NLAR 
fingerprint derived from a complex partial seizure in 
patient 6. 

4 Discussion 

4.1 Summary o f  results 

We have shown how NLAR models may be applied to 
the ictal EEG to create a fingerprint of the nonlinear 
dynamics, without incurring an explosion of parameters 
or other pitfalls associated with previous methods of 
nonlinear analysis of the EEG. Similarities and differ- 
ences in the fingerprint pattern obtained across patients 
correlated with their epilepsy diagnosis. For  patients 
with only typical absence seizures (patients 1-3), the 
main features of the nonlinear fingerprint were minima 
centered at lags (64 ms, 136 ms), (8 ms, 72 ms), and a ridge 
of lags separated by 24 ms, ranging from 40 ms to 60 ms 
in the past. For  patients with typical absence seizures as 
part of a more extensive seizure disorder (patients 4 and 
5), the fingerprints had some but not all of these features. 
The nonlinear fingerprint of a complex partial seizure 
had no resemblance to this pattern and lacked the min- 
imum at lags (64 ms, 136 ms) which were present in all 
patients with 3/s seizures. The similarities and differences 
in the nonlinear fingerprints in these patients thus corre- 
lated with the similarities and differences in their epilepsy 
diagnoses. 

4.2 Comparison with other approaches 
to nonlinear dynamics 

Several parametric and nonparametric methods of char- 
acterization of nonlinear dynamics have been applied to 
the EEG. All of these approaches share one feature with 
the present approach: they characterize aspects of the 
discharge that are independent of the power spectrum, or 
cross-correlation. However, there are many significant 
differences. 

Babloyantz and Destexhe (1986), Mayer-Kress 
(1987), and others have used dimension formalism to 
examine the EEG and the 3/s discharge. A related ap- 
proach to the identification of nonlinear dynamics is 
based on the use of surrogate data sets (Casdagli et al. 
1991; Theiler et al. 1991). In contrast to the present 
approach, these approaches focus on global dynamical 
behavior. However, rigorous measurement of dimension 
requires high signal-to-noise, extensive data sets, and 
stationarity. Furthermore, it is difficult to use a single 
number, such as an experimentally determined dimen- 
sion, to test dynamical models; the nonlinear fingerprints 
presented here do lend themselves to such interpretations 
(Schiff et al. 1994). 
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of minimal-variance NLAR 

Patient no. Segment no. Location of prominent minima Total V %RV(L) %RV(N) 

1 1 (3, 2) (5, 8) (9, 1) (8, 18) (15, 15) 4976 16.7 13.5 
2 (3, 2) (5, 8) (9, 1) (8, 17) (15, 15) 5474 17.3 14.2 

2 1 (6, 8) (9, 1) (8, 17) (12, 12) 2964 11.8 10.6 
2 (7, 10) (9, 1) (9, 18) 4313 11.8 9.6 

3 1 (6, 8) (9, 1) (6, 15) 7009 4.9 4.5 
2 (9, 1) (8, 17) 6137 3.0 2.8 

4 1 (9, 1) (8, 17) 1393 2.50 2.45 
2 (9, 1) (8, 17) 1380 2.00 1.95 

5 1 (8, 20) (16, 16) 1795 7.0 6.5 
2 (8, 18) (16, 16) 1832 3.4 3.0 

6 1 1592 8.2 8.0 

Total V, total variance (/IV2); %RV (L), percentage of variance remaining after 20-term LAR model; %RV (N), percentage of variance remaining after 
augmentation of LAR model by the optimum single quadratic term 

The information one can obtain from the NLAR 
fingerprint is in principle independent of the information 
one can obtain from the dimension. Dimension is 
a topologically invariant feature of the dynamics (Farmer 
et al. 1983; Feigenbaum 1983); it therefore is not altered 
by transformations (such as non-linear filters) which 
change parametric measures such as the NLAR finger- 
print. On the other hand, dimension reflects global 
properties; the NLAR fingerprint (at least in the present 
application) reflects local properties. 

The original motivation for the NLAR fingerprint 
was to characterize in a systematic fashion deviations 
from the null hypothesis that the signal is a linear trans- 
formation of gaussian white noise. That is, the NLAR 
fingerprint is based on third-order moments, calculated 
in the time domain, which are expected to be zero if the 
signal satisfies this null hypothesis. The bispectrum 
is a related approach, based on third-order moments 
calculated in the frequency domain. Under the null 
hypothesis, the bispectrum is zero. From the relatively 
limited use of the bispectrum in EEG analysis, it appears 
that this procedure is not an efficient one: many records 
must be averaged, and data must be smoothed, to obtain 
a meaningful bispectrum (Lopes da Silva 1982). The 
apparent inefficiency of the bispectrum in comparison to 
the nonlinear fingerprint described here is likely related 
to the greater efficiency of AR models in comparison with 
Fourier methods in the calculation of the power spec- 
trum (Akaike 1974; Gersh and Yonemoto 1977; Lopes da 
Silva 1982). 

Finally, Korenberg (1988) has proposed a procedure 
to obtain the coefficients of an NLAR model with all 
terms included. Korenberg's method of orthogonaliz- 
ation avoids the numerical pitfalls of inverting a large, 
nearly singular matrix. However, it does not avoid the 
problem of the explosion of the number of nonlinear 
parameters. 
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